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Motivated by the newly synthesized mixed-valent spinel LiRh2O4 for which a large thermopower is ob-
served in the metallic cubic phase above 230 K �Y. Okamoto et al., Phys. Rev. Lett. 101, 086404 �2008��, we
calculate the Seebeck coefficient by the combination of local density approximation and dynamical mean-field
theory �LDA+DMFT�. The experimental values are well reproduced not only by LDA+DMFT but also by the
less involved Boltzmann equation approach. A careful analysis of the latter shows unexpectedly that the origin
of the large thermopower shares a common root with a very different oxide: NaxCoO2. We also discuss how it
is possible to further increase the power factor of LiRh2O4 through doping, which makes the material even
more promising for technological applications.
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I. INTRODUCTION

Designing and searching for good thermoelectric materi-
als have a long history of extensive studies due to the scien-
tific interest and potential technological importance, particu-
larly for generating electrical power from heat �gradients�
and for cooling through the Peltier effect.1 Hitherto, the main
target materials have been various insulators or semiconduc-
tors such as Bi2Te3 �Ref. 1� and FeSb2,2 since it was believed
that huge thermopowers cannot be expected for metals.
However, recently, novel metallic systems with large ther-
mopower have been discovered and attracted much attention.
Generally, materials with strong electronic correlations are
promising;3 and a famous example is NaxCoO2, for which a
metallic resistivity as low as �=0.2 m� cm and a ther-
mopower as large as S=100 �V /K are observed simulta-
neously at 300 K.4 The coexistence of low resistivity and
large thermopower results in a large power factor �S2 /��,
which is especially important for device applications.

Most recently, Okamoto et al.5 synthesized a new mixed-
valent spinel oxide, LiRh2O4. This novel oxide shows two
structural phase transitions, i.e., the cubic-to-tetragonal tran-
sition at 230 K and the tetragonal-to-orthorhombic transition
at 170 K. Particularly interesting is however the high-
temperature cubic phase: Despite the metallicity, which is
reflected in a small resistivity and the existence of a Fermi
edge, the thermopower is as large as 80 �V /K at 800 K,
which is exceptional for metallic systems.

On the theoretical side, a variety of studies have been
performed to understand the mechanism of large thermopow-
ers in metallic systems. Among others, Koshibae et al.6 de-
rived an expression for the Seebeck coefficient of strongly
correlated systems in the high-temperature limit. Considering
the orbital and spin degrees of freedom of localized elec-
trons, they estimated the thermoelectric power of NaxCoO2
to be 150 �V /K.

However, when the temperature �T� is much lower than
the energy scale of the bandwidth ��2 eV�, it is expected

that the band dispersion of the system also plays a crucial
role as has been suggested from first-principles �band struc-
ture� studies.7,8 Indeed, recently, two of the present authors
proposed that the peculiar shape of the valence band �the
so-called a1g band� is important to realize a large ther-
mopower and high conductivity in NaxCoO2.9 The different
theoretical proposals led to a heated discussion10 and also to
a proposal to discriminate between them through the respec-
tive temperature dependence.11

The motivation of the present study is to clarify the origin
of the large thermopower in LiRh2O4. For this purpose, we
first perform a LDA+DMFT �Ref. 12� calculation �the com-
bination of the local density approximation and the dynami-
cal mean-field theory13�, employing the Kubo formula for the
Seebeck coefficient.14 This ab initio approach is going way
beyond Ref. 9, where several phenomenological parameters
had to be introduced. Second, we study whether the Boltz-
mann equation approach with the local density approxima-
tion �LDA� band dispersion as an input works well for this
system. We will show that this approach gives results quan-
titatively similar to those of LDA+DMFT. Even though
LiRh2O4 is a material very different from NaxCoO2, having
among others a much more complicated band structure, our
analysis nonetheless reveals that the origin of the large ther-
mopower is similar: the “pudding-mold” shape of the bands
crossing the Fermi energy. This outcome was not prejudiced
in our investigation and is quite surprising. We also discuss
how electron doping could further increase the power factor
of LiRh2O4.

II. METHOD

As a first step we do a LDA calculation for LiRh2O4,
using the linearized muffin tin orbital �LMTO� basis set,15

employing the experimental lattice constant a=8.46 and so-
called x parameter x=0.261 �which indicates the position of
the oxygen sites�.
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From the LMTO band structure, we construct an effective
Hamiltonian ��H��

LDA� by the projection onto Wannier
functions.16 Since the unit cell of LiRh2O4 contains four Rh
atoms and each Rh atom has three t2g orbitals, the size of the
effective Hamiltonian is 12�12. A comparison of the band
dispersion of this effective Hamiltonian with the total LDA
band structure is shown in Fig. 1. In contrast to the case of
NaxCoO2,9 not only the a1g orbital but also the eg

� orbitals
have a substantial density of states �see the right panel of
Fig. 1� at the Fermi level �EF�. Hence, we cannot extract a
simpler effective Hamiltonian from the 12�12 Hamiltonian
and need to keep all t2g orbitals in the following calculation.

Next, we supplement the three-orbital Hamiltonian by lo-
cal intraorbital �U� and interorbital �U�� Coulomb repulsions,
as well as by Hund’s exchange �J of Ising type�, and solve it
by dynamical mean-field theory �DMFT�,13 using the quan-
tum Monte Carlo �QMC� method. To get high-quality QMC
data, we take �3.0�107 sweeps in the calculation.

In the framework of DMFT, the Kubo formula for the
Seebeck coefficient is14

S =
kB

e

A1

A0
, �1�

where kB and e are the Boltzmann constant and unit charge,
respectively, and

An = 2�	�
−





d��xx���f���f�− ������n, �2�

�xx��� =
1

V
�
k

Tr�vx�k���k,��vx�k���k,��� . �3�

Here, ��k ,�� is the spectral function, i.e., the imaginary part
of the Green function G�k ,��; v���k��	k�
�1 /m��x
k�� is
the group velocity, f��� the Fermi-Dirac distribution func-
tion, and V the volume of the unit cell.

As is carefully discussed in Ref. 17, when the tight-
binding basis is well localized in the real space, we can use
the so-called Peirls approximation, v���k�=�kH��

LDA�k�.14 In
this method, since we have an analytical expression of
H��

LDA�k�, the mesh for the momentum sum in Eq. �3� can be
arbitrarily dense. In most cases we took a 40�40�40 mesh,
but in some cases also a 80�80�80 mesh for checking
convergence.

Usually, G�k ,�� is calculated in DMFT �QMC� from the
self-energy 
���, which is obtained as a root from the local
Green function Gimp���, obtained in turn from the QMC data
by the maximum entropy method �see, e.g., Refs. 18 and 19�.
However, this standard approach does not work well for the
calculation of the Seebeck coefficient because of the follow-
ing: Since �xx��� only contributes to Am for 
�
�kBT, we
need 
��� for small 
�
. For such frequencies 
��� is quite
small �smaller than 0.1eV for 
�
�kBT, see below�. As is
pointed out in Ref. 14, this smallness makes it difficult to
calculate 
��� reliably especially by a probability-based al-
gorithms such as the maximum entropy method.

Hence, in the present study, we calculate 
��� directly
from 
�i��, using both the Pade approximation and a poly-
nomial fit. For the former, we apply the algorithm proposed
in Ref. 20 to the data with i�� �0,45i� eV. For the latter,
we fit 
�i�� for i�� �0,4i� eV to �n=0

5 cn�i��n by a standard
least-squares fit. Since only the behavior at small 
�
 is rel-
evant for the Seebeck coefficient, we can expect the polyno-
mial fit to give reasonable results. The Pade approximation
might become problematic if poles are present in the vicinity
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FIG. 1. �Color online� Left panel: Band dispersion of the effec-
tive three-orbital Hamiltonian �solid line� and total LMTO band
structure �dashed line� of LiRh2O4. Right panel: partial a1g and eg
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FIG. 2. �Color online� LDA+DMFT�QMC� self-energy calcu-
lated by the Pade approximation �left� and a polynomial fit �right�.
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of the real-� axis. However, as we will see below, the result-
ing 
��� for the present case does not show any anomalous
behavior for small 
�
, which implies that the Pade approxi-
mation is not problematic.

In Fig. 2, we plot 
��� for �U ,U� ,J�= �3.1,1.7,0.7� eV,
which was estimated in Ref. 18 and �=1 /kBT
=30,34,40 eV−1. For T�300 K, the main contribution
stems from �� �−0.03,0.03� eV. For these energies Pade
approximation and polynomial fit give similar results. Even
though the agreement is not perfect, differences are small,
i.e., of O�0.01� eV. Thus we employ 
��� of both Pade
approximation and polynomial fitting in the following LDA
+DMFT calculation of the Seebeck coefficient. The differ-
ence gives us an estimate for the accuracy of our calculation.

Besides the LDA+DMFT study, we also performed cal-
culations based on the Boltzmann equation. The Seebeck co-
efficient can be estimated by calculating

S =
1

eT

K1

K0
, �4�

Kn = �
k,�

�u��k�u��k��−
� f���
��



�=��k��

��k��
n . �5�

Here, � is the relaxation time which we assume to be inde-
pendent of k; ���k� are the eigenvalues of H�,�

LDA�k�; and

u��k� the diagonal elements of Ũ†v�,��k�Ũ, where Ũ is the
unitary transformation which diagonalizes H��

LDA�k�.
Note that Kn can be roughly estimated as

K0 � �˜ �uA
2 + uB

2� , �6�

K1 � �kBT��˜ �uB
2 − uA

2� , �7�

apart from a constant factor.9 Here, �̃ is a summation over
the states in the range of 
��k�
�O�kBT�, and uA and uB are
typical velocities for the states below and above the Fermi
level, respectively.

III. RESULTS

In Fig. 3, we show the resulting Seebeck coefficient cal-
culated by the LDA+DMFT method and the Boltzmann
equation approach. We also plot the result of the constant-�
approximation for the Kubo formula, i.e., we assume 
���
=−1.0−3i for Eqs. �1�–�3�.

From Fig. 3, we see that �1� the Boltzmann equation and
the constant-� approximation for the Kubo formula give al-
most the same result; �2� the constant-� approximation gives
a larger thermopower than LDA+DMFT; and �3� this
smaller LDA+DMFT thermopower is closer to experiment,5

already for �U ,U� ,J�= �3.1,1.7,0.7� eV �Ref. 18� but even
more so for somewhat smaller values of the Coulomb inter-
action.

Point �1� demonstrates that the calculation via Eq. �1� is
working well, if 
��� is correct. Point �2� can be understood
from the behavior of −Im 
���: Fig. 2 shows that −Im 
���
calculated by the LDA+DMFT method is large for negative

� but small for positive � �independently of Pade approxi-
mation and polynomial fit�. This means that, in contrast to
the constant-� approximation, the actual life time of quasi-
holes is longer than that for quasiparticles. Therefore, the
contribution of the quasiholes �particles� to �xx in Eq. �1�
becomes larger �smaller� in the LDA+DMFT calculation,
and consequently the first moment, A1, becomes smaller.
Here, it should be noted that the constant-� approximation
does not correspond to the limit of U=U�=J=0, since this
asymmetry of life time exists even in the weak coupling
limit. This is the reason why the results of LDA+DMFT
move away from those of the constant-� approximation as U,
U�, and J are decreased.

As for point �3�, we would like to note that the correla-
tions renormalize the bandwidth. This renormalization is cal-
culated microscopically here whereas it has been adjusted to
the angle-resolved photoemission spectrum in Ref. 9.

IV. DISCUSSION

While there are some differences between Boltzmann
equation approach and LDA+DMFT, the results are still
very similar, even quantitatively. Hence, we may expect that,
in the present case, the Boltzmann equation can be used as a
convenient tool to analyze the mechanism of the large ther-
mopower, or even to design more efficient thermoelectric
materials.

Let us first examine whether the mechanism proposed for
NaxCoO2 in Ref. 9 can work also in LiRh2O4. If the valence
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FIG. 3. �Color online� Thermopower calculated by the Boltz-
mann equation approach and the constant-� method, as well as by
LDA+DMFT, using both the Pade approximation and a polynomial
fit for the self-energy.
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band has a peculiar shape of dispersion which is dispersive
below the EF but somewhat flat above �the so-called
“pudding-mold” type�, K1 in Eq. �7� becomes large, since the
group velocity above EF �uA

2� is much larger than the one
below EF �uB

2� in this case. This is the basic idea of Ref. 9 of
how to realize a large thermopower and a low resistivity at
the same time.21 In the top panel of Fig. 4, we plot the group
velocity squared for LiRh2O4 within the energy window of

�−EF
�3kBT at T�300 K. We see that uA

2 is indeed larger
than uB

2 , confirming this mechanism. We note here that al-
though the Rh valence is +3.5 in LiRh2O4, the degeneracy of
dxy, dyz, and dzx orbitals in the cubic phase makes the number
of holes per band small, resulting in a situation similar to
NaxCoO2 with the Co valence smaller than +3.5. This view is
consistent with the experimental fact that the thermopower is
suppressed in the tetragonal phase below 230 K, where the
degeneracy is lifted.5

However, we also see that the �squared� group velocity
above EF is still large for some k points. In fact, for LiRh2O4,
there are two pudding-mold bands. For the Rh valence of
+3.5, EF lies near the bending point of one of the pudding-
mold bands, but also cuts through the dispersive portion of
the other �see the upper inset of Fig. 4�. The former enhances
the thermopower, while the latter suppresses it. This might
be the reason why LiRh2O4 is not such a good thermoelectric
material as NaxCoO2.

To enhance the thermopower in LiRh2O4, we suggest the
following possibility: If we dope electrons to this system,
one of the pudding-mold bands will be brought completely
below EF �see the lower inset of Fig. 4�. The second panel of
Fig. 4 shows the group velocity squared for such a doped
system with Rh valence +3.08. In this case, the group veloc-
ity squared above EF is small for the entire Brillouin zone.

To confirm this idea, we calculate the thermopower and
the power factor �normalized by its value at Rh valence
= +3.5� for various Rh valences by means of the Boltzmann
equation approach22 �see Fig. 5�. The results indicate a maxi-
mal power factor �=S2 /��K1

2 /K0
3� at a valency of +3.08,

where it is almost four times larger than for LiRh2O4. While
the orbital degeneracy of dxy, dyz, and dzx already plays a
crucial role to make EF be higher than those of single-orbital
systems,5 realizing this situation experimentally is an inter-
esting challenge which seems to be feasible.
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